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a b s t r a c t

Folding of viscous layered rocks is traditionally viewed as an instability arising from viscosity differences
between layers. This approach derives from Biot, and for purely viscous materials predicts the growth of
single wavelength systems; the dominant wavelength is sensitive to layer thickness, the viscosity ratio
between the layers, the amount of shortening and the boundary conditions. This paper presents one
alternative theory of folding to that of Biot and addresses the deformation of elastic-viscous materials
where the viscosity ratio between layers is small and Biot theory predicts folds will not form. Such ratios
are consistent with situations in the mid to lower crust as indicated by experimental data. Folding results
from the coupling between temperature dependent viscosity and heat generated by deformation; the
result is weakening in the hinges of embryonic folds and subsequent buckling. This process is distinct
from the Biot buckling process. The structures that develop resemble natural structures in that folds
develop at a range of length scales, hinges undergo strong thickening, and axial plane crenulations form.
This approach is grounded in non-equilibrium thermodynamics; the coupling of deformation to fluid
flow and chemical reactions is explored as part of a unified framework for rock deformation processes.

� 2008 Published by Elsevier Ltd.
1. Introduction

1.1. Background

The formation of folds in deformed rocks is traditionally
considered in terms of contrasts in competency between layers (e.g.
Ramberg, 1963; Biot, 1965; Sherwin and Chapple, 1968; Smith,
1975, 1977; Johnson and Fletcher, 1994). We use the term compe-
tency contrast to mean differences in the rheological properties of
rocks whether these rheological properties are the elastic moduli,
plastic properties such as cohesion or friction angle, or viscous
properties such as the effective viscosity of power law viscous
materials (see Section 3). Although there have been considerable
advances in identifying specific constitutive relations operating
during rock deformation, the term competency is still useful as
a general term for the field geologist who remains uncertain as to
which constitutive relation is relevant for field examples. All of
these properties are measures of how much stress a material can
maintain for given imposed deformation conditions and Biot (1965)
together with subsequent workers (Sherwin and Chapple, 1968;
Fletcher, 1974; Smith, 1975, 1977, 1979; Johnson and Fletcher, 1994)
have shown that strong differences in all of these properties
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contribute to the amplification of folding instabilities. The basis of
the traditional theory is that the deformation of layered rocks is
intrinsically unstable, given enough competency contrast between
the layers, so that perturbations in the geometry of the layers are
amplified by the deformation as the result of local perturbations
induced in the imposed velocity field (Fletcher, 1974; Cobbold,
1975, 1976; Smith, 1975, 1977, 1979; Fullagar, 1980). For some
combinations of rheological parameters this inhomogeneous
velocity field amplifies initial heterogeneities with continuing
deformation and folds develop.

For shortening deformations of layered linear viscous (New-
tonian) materials, with large (>100) ratios between the viscosities
of the layers and driven by a constant force parallel to the layer,
a single wavelength grows faster than all others leading to
a dominant wavelength for folds known as the Biot dominant
wavelength, lB. For large viscosity ratios the ratio of lB to the layer
thickness is much greater than the wavelength to thickness
observed in naturally deformed rocks and Sherwin and Chapple
(1968) showed that for this particular constitutive relation and
boundary conditions, folds with naturally observed wavelength to
thickness ratios (4–7, and hence less than lB) can develop at real-
istic shortening strains (40%) and low viscosity ratios of 18–20 if
layer parallel shortening is taken into account. For viscosity ratios
<10 the amplification is small so that no folds develop. The
wavelength of folding that develops in a particular situation is the
dominant wavelength, lD, also called the preferred wavelength
(Johnson and Fletcher, 1994), and this is usually less than lB.

mailto:bruce.hobbs@csiro.au
www.sciencedirect.com/science/journal/01918141
http://www.elsevier.com/locate/jsg


B. Hobbs et al. / Journal of Structural Geology 30 (2008) 1572–1592 1573
For a linear theory of folding of viscous materials (Biot, 1965;
Johnson and Fletcher, 1994) similar results to those of Sherwin and
Chapple hold for constant strain rate or velocity boundary condi-
tions (Johnson and Fletcher, 1994). However for a non-linear theory
where the kinematic constraints of constant velocity or constant
strain rate are taken into account (Mühlhaus et al., 1994), the results
resemble those of Sherwin and Chapple (1968) except that the
amplification is significantly smaller for a given viscosity ratio to
the extent that significant amplification does not develop unless
the viscosity ratio is of the order of 50. For this viscosity ratio the
initial dominant wavelength is lB but this decreases as shortening
proceeds. For viscosity ratios less than approximately 50, the
perturbation field remains small or decays in importance with
increasing strain and the embedded layer mainly thickens homo-
geneously with only small amplitude folding deflections devel-
oping. For viscosity ratios less than 10, no folds develop. In contrast
to the Sherwin and Chapple result, folds with lD < lB develop for
large viscosity ratios. Experimental data indicate that viscosity
ratios as small as 2–5 may be common in the mid to lower crust so
that the development of folds by a process other than the Biot
process must be considered.

In this paper we explore one mechanism alternative to that of
Biot for the formation of folds in which the feedback between the
heat generated by deformation results in shear zones within which
there is a localised weakening of the rock. We emphasise that quite
small fluctuations in temperature (of the order of 2–10 �C) above
ambient temperature are sufficient to generate the effects we
describe here. Intersection of these shear zones with layers leads to
weakened embryonic hinges that buckle and then amplify to
produce the observed structures. This thermal–mechanical
approach leads to folding with small viscosity ratios (<10) and low
values of the stress exponent, N (<5), for power-law materials,
consistent with the mechanical properties inferred from experi-
mental data.

The basic approach adopted in this paper derives from the non-
equilibrium thermodynamic theory of coupled, deforming systems.
The term coupled is meant to imply that during deformation two or
more processes operate that have strong feedback influences on
each other. In particular the dissipation of energy is considered as
a basic feedback process. By dissipation we mean the conversion of
energy generated by mechanical, chemical or other processes into
heat or sound and the conduction of this heat within or out of the
system. In this paper we concentrate solely upon the influence of
heat generated by mechanical dissipation on the development of
folds in layered materials. Preliminary results have been published
in Hobbs et al. (2007).

1.2. Purpose of the paper

The purpose of this paper is to explore mechanisms of folding
that derive from the coupling of two or more processes such as
thermal–mechanical, fluid–mechanical or chemical-mechanical
coupled feedback interactions, but with an emphasis on thermal–
mechanical coupling. The importance of coupling two or more
processes together lies in the emergence of new phenomena that
do not arise in the un-coupled system. These new phenomena
comprise instabilities, such as the localisation of deformation into
shear zones and the amplification of perturbations to produce folds
and boudinage; it is to be emphasised that such instabilities do not
occur in many of the systems explored here with realistic geological
parameters unless the processes are coupled. In this paper we
explore the development of folds; another paper (Hobbs et al.,
submitted) considers the development of boudinage.

This coupled approach incorporates detailed mechanisms of
deformation that are not present in classical theories of folding. In
turn, this introduces a very large range of length scales for folding
and boudinage together with geometries that are not intrinsically
periodic. Surprising results also emerge in that differences in
properties other than mechanical properties (such as viscosity) can
lead to fold amplification. Such situations involve differences in
thermal softening (in thermal–mechanical systems driven by
differences in the activation enthalpy), differences in dilatancy (in
fluid–mechanical systems) and differences in chemical potential (in
chemical-mechanical systems). Perhaps of even greater interest is
the emergence of a range of other structures as a natural conse-
quence of the coupling. These structures include axial plane
cleavages and schistosities, crenulation cleavages, lineations, por-
phyroblasts, metamorphic differentiation and various vein and
fracture systems, all of which are intrinsically associated with the
folding of layered sequences in natural examples.

The coupled approach explored here integrates concepts of fold
development across a range of length scales as well as placing the
development of other fabrics commonly observed in association
with natural folds, within a unified framework. Within this
framework, the classical un-coupled Biot approach appears as
a special case that arises for relatively low temperatures and fast
strain rates and where thermal, fluid, chemical, damage and fabric-
evolution feedback coupling relations are not considered. Our
proposal in this paper is that the incorporation of such effects is not
only realistic, but also introduces an extremely rich array of
behaviours that form an integrated conceptual package that sheds
light on the development of deformed metamorphic rocks. The
study of coupled systems involves examining systems far from
equilibrium where in addition to the conventional continuity and
momentum equations, the energy fluxes in the system arising from
deformation, fluid flow, thermal transport and chemical reactions/
transport, are tracked and the feedbacks between energy dissipa-
tion and the constitutive behaviour are addressed. Such processes
are constrained by the Second Law of Thermodynamics as
expressed by the Clausius–Duhem Inequality (Truesdell and Noll,
1965, section 79). The fundamental concepts are not necessarily
associated with heat generated by deformation and thermal feed-
back. The basic driver is the tendency for non steady state systems
to evolve so that entropy production is maximised subject to the
constraints imposed (Ziegler, 1983; Martyushev and Seleznev,
2006) so that even in temperature insensitive materials, such as
Mohr-Coulomb materials, the same formalism and effects apply
(Collins, 2003).

1.3. Plan of the paper

The traditional approach to folding in uncoupled systems is
from a non-thermodynamic point of view and is the pathway fol-
lowed by most workers since Biot (Ramberg, 1963; Fletcher, 1974,
1991; Smith, 1975, 1977, 1979; Johnson and Fletcher, 1994) so that it
is not commonly appreciated in the geological literature that Biot
had an equivalent but alternative path to folding theory based on
non-equilibrium thermodynamics (Biot,1984). In Section 2 we
follow the non-thermodynamic path to set the boundaries for
applicability of the non-coupled theories and to illustrate the
controls of boundary conditions and constitutive parameters on
amplification factors and wavelengths that develop. In Section 3 we
briefly review the experimental work on the competency differ-
ences that exist in rocks and point out that differences in any
mechanical property as large as 100 are probably rare, as are values
of N greater than 5, except in the topmost crust, and even then for
special rock assemblages. For conditions corresponding to the mid
to lower crust viscosity ratios as high as 20 would seem to be rare so
that it becomes difficult to explain the development of natural folds
in the mid to lower crust using the traditional theories. In Sections 4
and 5 we specifically develop the non-equilibrium thermodynamic
theory of deforming materials with thermal feedback and then in



Table 1
Symbols used in this paper, units and typical values

Quantity Description Units, typical values

A Pre-exponential factor Pa�N s�1

c Cohesion Pa
cp Specific heat at constant pressure 1450 J kg�1 K�1

D Deformation rate s�1

D=Dt Material time derivative
d Grain size mm
do Reference grain size 1mm
E Young’s modulus 4.5 � 109 Pa
EL Young’s modulus for layer Pa
Ee Young’s modulus for embedding medium Pa
e Specific internal energy J kg�1

f Body force N
h Thickness of layer m
J2 Second invariant of the deviatoric stress Pa2

JK Mass flux of Kth chemical component kg m�2 s�1

k Shear zone thickness m
L Length after deformation or length scale m
L0 Length before deformation m
ltherm Thermal diffusion length scale m
m Mass kg
mK Mass of Kth chemical component kg
N Stress power law exponent Dimensionless
NL Stress power law exponent for layer Dimensionless
Ne Stress power law exponent for

embedding medium
Dimensionless

n An integer Dimensionless
P Axial force N
Pethermal Thermal Peclet number Dimensionless
p Confining pressure Pa
pf Fluid pressure Pa
Q Activation enthalpy J mol�1

q Heat flux J m�2

R Gas constant 8.3143 J K�1 mol�1

r Heat supply per unit mass J kg�1

s Specific entropy J kg�1 K�1

T Absolute temperature K
Tc Critical temperature where thermal–

mechanical feedback becomes important
K

t Time s
~t Dimensionless time Dimensionless
u Local material velocity vector m s�1

w Sideways deflections of a layer m
wo Initial perturbation of layer m
wn Deflection associated with mode n m
xi Spatial coordinates m

a Volumetric expansion coefficient 3.1 � 10�5 K�1

aij Volumetric expansion tensor K�1

a i Collection of scalar, vector and
tensor internal state variables

Units of relevant scalars,
vectors or tensors

d Grain size exponent Dimensionless
3ij Strain tensor Dimensionless
_3ij Strain-rate tensor s�1

z Variation in fluid content in a
porous system

Dimensionless

h Viscosity Pa s
hL Viscosity of layer Pa s
he Viscosity of embedding medium Pa s
k Thermal diffusivity 0.6 � 10�6 m2 s�1

L Normalised axial force Dimensionless
lB Biot dominant wavelength m
lD Dominant or preferred wavelength m
m Elastic shear modulus Pa
mK Specific chemical potential of Kth

chemical component
J kg�1

n Poisson’s ratio 0.3 Dimensionless
r Mass density 2750 kg m�3

sij Cauchy stress tensor Pa
s0ij Deviatoric stress tensor Pa
sw

ij Objective corotational stress tensor Pa
s Yield stress Pa
yk Array of k scalar, vector and tensor

internal state variables
Units of relevant scalars,
vectors or tensors

F Dissipation function J kg�1 s�1

Fs Specific dissipation J kg�1 s�1

Fchemical Chemical dissipation J kg�1 s�1
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Section 6 apply this theory to the development of folds in single and
multi-layered systems. These results are compatible with what is
observed in naturally deformed rocks from the point of view that
the fold profiles are less regular than predicted by the uncoupled
theory, scale invariance emerges naturally so that folds appear at
many length scales, the wavelength to thickness ratios are small
(2 to 4) and hence less than lB, and fold profiles range from Type 1A
to Type 3 of Ramsay (1967) rather than being more or less
concentric as expected from the un-coupled theories (e.g.
Schmalholz et al., 2001). In Section 7 we emphasise that the
thermal–mechanical approach adopted here is but one avenue
leading to an understanding of the folding of layered, coupled
systems and that damage, microstructural, chemical and fluid flow
processes result in similar structures but at different length scales
and in differing geological environments. We draw this to
a conclusion in Section 8. Mathematical symbols are defined as they
are introduced and also in Table 1.

2. Deformation with no thermal feedback

2.1. The stability of deforming systems

This paper is concerned with the conditions under which
a deforming system becomes unstable through feedback relations
between mechanical behaviour and thermal, fluid, and chemical
transport processes. There are two fundamental ways in which
such instability can occur. One consists of the growth of perturba-
tions in an initially homogeneous system and the other consists of
a bifurcation in behaviour, or the spontaneous development, and
subsequent growth of one out of two new evolutionary paths, for
the system. The classical Biot approach is concerned with the first of
these instability types; the feedback processes discussed here are
concerned with the second type.

For shortening at constant force of a system consisting of
geometrical perturbations of a highly viscous layer embedded in
a low viscosity matrix, Biot (1965) showed that one wavelength of
perturbation, lB, given by equation (1) below, grows preferentially
and at an exponential rate; all other perturbations grow relatively
slowly. This system is unstable with respect to perturbations of
wavelength, lB, and the instability exists from the instant defor-
mation begins. The results of the linear theory developed by Biot
describe what happens during a small deformation after instability
develops. Such an evolution may continue to larger deformations or
other evolutionary trends may develop (Mühlhaus et al., 1994).
Examples of bifurcation behaviour include the development of
shear bands in hitherto homogeneously deforming material and
the development of chemical differentiation in material of hitherto
homogeneous chemical composition.

These two types of instability can be closely associated in some
materials in that the bifurcation event can generate new pertur-
bations that are then amplified. However both types of instability
do not occur in all materials. Thus, bifurcation, leading to shear
localisation, does not occur in an isotropic, viscous (including
power law) material with no softening (Anand et al., 1987) whereas
growth of perturbations does occur. Both types of behaviour occur
in Mohr–Coulomb plastic materials and in anisotropic viscous
materials (Hobbs et al., 1990, 2000; Mühlhaus et al., 2002).

2.2. Classical un-coupled folding theory

The classical un-coupled treatments of buckling of elastic,
plastic or viscous single layers embedded in another medium
originated with Biot (1937, 1957, 1959, 1961, 1963, 1965); identical
developments were made by Ramberg (1963) for viscous materials.
The common result of all such treatments, if the layer or
the embedding materials are elastic, linearly viscous or power



Table 1 (continued )

Quantity Description Units, typical values

4 Friction angle Degrees
c Thermal efficiency Dimensionless
J Specific Helmholtz Free Energy J kg�1

u Amplification factor Dimensionless
uT Total normalised growth rate s�1
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law-viscous is that just one particular wavelength (the dominant
wavelength) is amplified. For elastic-viscous materials a range of
other fold geometries is possible ranging from single wavelength
fold trains to two wavelength geometries to fold systems with
spatially decaying amplitudes (Mühlhaus et al., 1998; Jeng et al.,
2002; Jeng and Huang, 2008), to the development of localised fold
packets (Hunt et al., 1996b) and to fractal geometries (Hunt et al.,
1996a). However for purely viscous materials, periodic fold geom-
etries result from the classical theories no matter what boundary
conditions, initial geometry or initial deviations from the ideal
planar state exist. Mancktelow (1999, 2001) has explored the
influence of various forms of initial geometrical perturbations on
fold growth and has shown that initial probability distributions do
not have an appreciable influence upon the wavelengths of folds
although they do impact on the amount of layer shortening during
folding.

2.2.1. Definition of the deforming system
The problem is usually set up as shown in Fig. 1. A single thin

layer of thickness, h, is embedded in a less competent medium and
the whole assembly is subjected to constant force, stress, velocity or
strain rate boundary conditions resulting in shortening in the
direction parallel to the initial orientation of the layer (x1). The
constitutive parameters for the layer are the Young’s Modulus, EL,
the elastic shear modulus, mL, the effective viscosity, hL, and the
power law exponent, NL. Similarly, for the embedding medium,
these parameters are Ee, me, he and Ne respectively. The response of
this system is quite sensitive to the boundary conditions. This arises
because the amplification rate of folding depends on the force, P,
parallel to x1 (Biot, 1965; Mühlhaus et al., 1994). For constant stress
boundary conditions, P must increase as the thickness increases so
that amplification is faster than for constant P conditions. For
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Fig. 1. Model set-up. A single layer of thickness, h, and with Young’s Modulus, EL,
elastic shear modulus, mL, and effective viscosity (given by equation (10)), hL, is
embedded in a medium with Young’s Modulus Ee, elastic shear modulus me and
viscosity, he. The assembly is shortened in the x1 direction by an imposed stress, s1,
force, P, velocity or strain-rate. For power-law viscous materials the stress exponents NL

and Ne also need to be explicitly considered.
constant velocity boundary conditions the boundary cannot
accelerate and so P decreases with time as does the amplification
rate. For constant strain rate conditions, the velocity decreases with
time. Thus the amplification rates for constant strain rate condi-
tions are less than for constant velocity conditions. For small
shortening strains, the realm of the Biot theory, all of these
boundary conditions give the same result. Except for Mühlhaus
(1993) and Mühlhaus et al. (1994) these dynamic and kinematic
constraints have not been considered in the literature.

2.2.2. Deformation of viscous materials
As an example, for a linear viscous constitutive law, the Biot

dominant wavelength, is given by

lB ¼ 2ph
ffiffiffiffiffiffiffiffi
hL

6he

3

r
(1)

Thus for a value of 6000 for hL/he one expects a dominant wave-
length of approximately 63 times the layer thickness. One should
note that typical values of l/h for real rocks are in a narrow range of
2–7 (see Sherwin and Chapple, 1968; Smith, 1979; Price and Cos-
grove, 1990; Johnson and Fletcher, 1994; Patton and Watkinson,
2005 for reviews). Thus, for natural ranges of l/h equation (1)
predicts viscosity ratios of 0.2–8.3 for naturally deformed rocks if
they were composed of linear viscous materials.

For linear viscous materials with constant stress boundary
conditions, the normalised growth rate, uT, which is the growth rate
of perturbations divided by the background strain-rate, is defined
by (Smith, 1975)

ln
w
wo
¼ �uT ln

L
Lo

(2)

where wo, w are the initial and current amplitudes of the pertur-
bations and Lo, L are the initial and current lengths of a line initially
parallel to the undeformed layer. Thus if uT ¼ 5, shortening of 50%
produces an amplification of w=wo ¼ 32.

The magnitude of the total normalised growth rate, juT j, cor-
responding to the dominant wavelength for constant applied force
in Newtonian viscous materials is (Biot, 1961; Smith, 1975)

juT j ¼
�

4hL

3he

�2=3

þ1 (3)

Non-linear viscous layered materials behave in much the same
manner as Newtonian materials (see Fletcher, 1974; Smith, 1977,
1979) except that the growth rates are commonly larger and the
dominant wavelengths smaller than for linear materials. The
expression equivalent to equation (1) for power-law materials is

lD ¼ 2ph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hLN0:5

e
6heNL

3

s
(4)

where lD is the dominant wavelength. If NL >
ffiffiffiffiffiffi
Ne
p

, the dominant
wavelength for power law materials is less than that for Newtonian
materials. Equation (4) is an asymptotic expression for hL/he > ca.
50. For small values of hL/he (less than say 10) lD is nearly constant
and lies in the range 4 to 6 for a wide range of stress exponent
values (Smith, 1977).

The total normalised fold amplification rate for power law
viscous materials (Smith, 1977) is

juT j ¼
�

4hL

3he

�2
3

ðNLNeÞ
1
3þ1 (5)

This again is an asymptotic expression approximately true for
values of hL/he > 20. For values of hL/he < 10 and for NL and Ne < 5,
juT j is less than about 8 and for hL/he < 5, juT jis less than 2. Thus
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Fig. 2. Behaviour of viscous layered material embedded in viscous material with
constant velocity boundary conditions (after Mühlhaus et al., 1994). (a) Evolution of
the normalised axial force, L, in the layer with amplification for various lm=lB . wm is
the displacement associated with wave number, m, and wom is the initial perturbation
associated with that mode. The calculations are made for wom=h ¼ 0:1. The figure
plots results for values of lm=lB ranging from 5 to 0.1. (b) Evolution of amplitude,
wm=wom , with dimensionless time, ~t where ~t ¼ 3ðhL=heÞ

2
3 and 3 is the shortening strain.

Values of ~t at 50% shortening strain for values of hL=he of 102, 103, 3 � 103 and 5 � 103

are shown as well as results from the linear stability analysis (Biot). (c) Zoom into
Fig. 3(b) showing values of ~t at 50% shortening strain for values of hL=he of 5, 20, 102

and 3 � 102.

B. Hobbs et al. / Journal of Structural Geology 30 (2008) 1572–15921576
although power law constitutive relations predict realistic domi-
nant wavelengths, the growth rates corresponding to these realistic
values are too small to produce geologically realistic folds.

In the studies discussed above, the layer is compressed with
a constant force, P, parallel to x1. As discussed above, the results that
are derived from such a model can be quite different to those that
arise if the boundary conditions consist of a constant velocity or
strain rate parallel to x1 and one considers large deformations. The
following important points that are different to the classical Biot
results need to be noted.

For a Newtonian viscous layer embedded in a less viscous
medium with constant force boundary conditions a dominant
wavelength is exponentially amplified (accompanied by exponen-
tial growth in the shortening strain rate) and the wavelength is
a function of both the viscosity ratio and the amount of shortening
parallel to x1 (Sherwin and Chapple, 1968). As we have noted,
Sherwin and Chapple (1968) show that for relatively small viscosity
ratios of 18–20, wavelength to thickness ratios of 5–7 can be
developed for 40% shortening. This compares favourably with
observations of natural folds under the assumption that the
boundary conditions in Nature consist of constant imposed force.
For viscosity ratios <10 amplification is small and no folds develop.

The linear theory for constant velocity or strain rate boundary
conditions gives similar results to those of Sherwin and Chapple
(Johnson and Fletcher, 1994). However, if non-linear effects are
taken into account, constant velocity or strain rate boundary
conditions do not lead to the same results as constant force
boundary conditions (Mühlhaus et al., 1994). For constant velocity
conditions the force in the layer decreases, as does the fold growth
rate, with increasing shortening. This evolution of force is shown in
Fig. 2a, modified from Mühlhaus et al. (1994). Fig. 2b and c show the
evolution of amplification with increasing time for various nor-
malised wavelengths. For small deformations (the regime relevant
for the linear stability analysis and the linear theories), the Biot
dominant wavelength is the fastest growing mode but very quickly
with continued shortening, shorter wavelengths grow faster. The
growth of the Biot wavelength is exponential according to the
linear theory but if kinematic constraints are taken into account,
the growth rate of all wavelengths is monotonically decreasing
although growth rates for shorter wavelengths decrease fastest.
However, in general, the longer wavelength modes have the
smallest total amplification and only the shortest wavelengths
(lD < lB) have significant total amplifications. Thus these shorter
wavelength modes dominate especially as the viscosity ratio
becomes large (say >100).

In some respects, this result is similar to the result of Sherwin
and Chapple in that wavelength to thickness ratios smaller than the
Biot dominant ratio ultimately dominate but in this case the
amplification rate is no longer exponential and rapidly decays so
that, except for large viscosity ratios, the layer essentially shortens
homogeneously with little fold growth. Thus the results of Mühl-
haus et al. (1994) indicate that for a viscosity ratio of 20, lB is the
dominant mode up to 50% shortening, the maximum amplification
being negligible at about 5 (Fig. 2c). In contrast to the situation for
constant force boundary conditions, high viscosity ratios with
constant velocity boundary conditions produce very short wave-
length folds. Thus a viscosity ratio of 3000 results in modes equiv-
alent to 0.1lB developing for most of the folding history (Mühlhaus
et al., 1994 and Fig. 2b) with a maximum amplification at 50%
shortening of about 150. Constant stress boundary conditions would
lead to a mode approximately equal to lB developing (Sherwin and
Chapple, 1968, their Fig. 3). The results of Mühlhaus et al. (1994)
need to be modified in that they do not consider the influence of
continued shortening after the amplification rate becomes small.
This results in further reduction in lD as is discussed below in
Section 2.2.4 and is similar to the Sherwin and Chapple effect.



Fig. 3. Perturbation velocity field in elastic-Newtonian viscous materials for various viscosity ratios. Shortening strain-rate ¼ 10�12 s�1. Viscosity of the embedding material is
always 1019 Pa s. (a) hL=he ¼ viscosity ratio ¼ 20, shortening ¼ 11%. Perturbation field reinforces the imposed homogeneous velocity field; weak deflections correspond to
lD ¼ 1:7lB , lD=h ¼ 15; (b) Viscosity ratio ¼ 20, shortening ¼ 40%, lD ¼ 1:4lB , lD=h ¼ 13:5. Perturbation field has evolved to almost homogeneous shortening. (c) Viscosity
ratio ¼ 200, shortening ¼ 11%. Perturbation field drives the development of antiforms and synforms; lD ¼ 0:6lB , lD=h ¼ 10 (d) Viscosity ratio ¼ 200, shortening ¼ 40%. Pertur-
bation field has evolved to almost homogeneous shortening; lD ¼ 0:4lB , lD=h ¼ 7. (e) Viscosity ratio ¼ 3000, shortening ¼ 11%. Perturbation field now very strong; lD ¼ 0:3lB ,
lD=h ¼ 12. (f) Viscosity ratio ¼ 3000, shortening ¼ 40%. Perturbation field has evolved to almost homogeneous shortening; lD ¼ 0:2lB , lD=h ¼ 8.
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These results have important implications for the interpretation
of natural folds under the assumption that the materials involved
behave as viscous materials with no elasticity. Thus a fold system
with wavelength to thickness ratios in the range 5–7 with an
assumed amplification of 100 and a shortening of 50% would be
interpreted as having viscosity ratios of approximately 20 under the
Sherwin and Chapple analysis with constant force boundary
conditions. For the Mühlhaus et al analysis for constant velocity
boundary conditions this same fold system with the same
assumptions of amplification and shortening corresponds to
a viscosity ratio of approximately 3000 with lD ¼ 0.1lB.
2.2.3. Deformation of elastic-viscous materials
The inclusion of elasticity in the material constitutive relations,

together with viscosity, adds considerable complexity, so much so
that a general theory of folding of layered elastic-viscous materials
is in its infancy (Hunt et al., 1996b). The theory of folding of layered
viscous materials as developed by a host of workers (Biot, 1965;
Fletcher, 1974; Smith, 1975; Johnson and Fletcher, 1994) is essen-
tially a linear theory where the evolution of the system is described
by a differential equation with fourth order spatial derivatives. Such
equations are readily interpreted in terms of harmonic solutions
which may be expanded as Fourier series in which the growth of
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each wavelength is independent of all others. This leads immedi-
ately to the study of dispersion relations and an emphasis on the
identification of the fastest growing, or dominant, wavelength.

For elastic-viscous materials the differential equation describing
the evolution of the system is still fourth order in spatial derivatives
but also involve time. Now the opportunity exists for interference
between modes and non-harmonic solutions or localisation of
folding may arise. In this case the concept of a dominant wave-
length may no longer be relevant and a host of different waveforms
are possible including the development of localised wave packets
(Hunt et al., 1996a).

The behaviour of the material now becomes strain rate depen-
dent (Hunt et al., 1996b; Schmalholz and Podladchikov, 1999;
Zhang et al., 2000; Jeng and Huang, 2008). For fast strain rates the
material may behave as an elastic material and the kink folds and
localised fold packets described by Hunt and co-workers (Hunt
et al., 2000, 2001) arise. This behaviour represents another kind of
non-Biot folding mechanism (other than the coupled feedback
mechanisms discussed in this paper) and is undoubtedly important
in the upper crust of the Earth.

For a Maxwell elastic-viscous material the response of a layer
subjected to a deformation rate parallel to x1 of D is given by

_P
4m
þ P

4h
þ hD ¼ const: (6)

(Jaeger, 1969; Mühlhaus et al., 1994, 1998) where P is the force
parallel to x1 in the layer. If constant force boundary conditions are
adopted this behaves as a purely viscous material so that one
expects the same results as found by Sherwin and Chapple
although the wavelength may be dependent on the magnitude of
the compressive force (Biot, 1957). However for constant velocity or
strain rate conditions this kinematic constraint implies that P is no
longer constant and is a function of time, t, with _P � 0. Thus the
behaviour of a Maxwell material with constant velocity or strain
rate boundary conditions is qualitatively similar to that of a purely
viscous material with the same boundary conditions and so similar
to the behaviour described by Mühlhaus et al. (1994) and sum-
marised in Fig. 2.

The paper by Neurath and Smith (1982) purports to present
experimental evidence that folds can develop with viscosity ratios
as low as 7.3. The materials involved are modelled as viscous power
law materials with no elasticity even though the stress strain curves
exhibit linear pre-yield segments with an apparent elastic modulus,
m, of approximately 4 � 106 Pa. The material comprising the
embedded layer (microcrystalline wax) is clearly elastic-viscous
and apparently exhibits strain softening. The boundary conditions
consist of constant imposed velocity so that the discussion pre-
sented by Mühlhaus et al. (1994) is pertinent. The two strain rates
investigated (0.29 � 10�4 s�1 and 1.1 �10�4 s�1) correspond to
viscosities of 2 � 108 Pa s and 8 � 106 Pa s respectively resulting in
very small relaxation times (ratio of viscosity to shear modulus) for
the layer of 50 s and 2 s respectively. The decrease in amplification
rate with continued deformation demonstrated experimentally by
Neurath and Smith (1982) is in keeping with a relaxation in stress
in the layer as expected from the boundary conditions and the
constitutive properties. Note that the straight grid lines initially
marked on the Neurath and Smith specimens show little distortion
even when they are within one layer thickness of the deflections
shown by the layer. The specimens are initially shaped so that the
predetermined dominant wavelength is prescribed as deflections
before deformation begins and these distortions remain and grow
somewhat during subsequent deformation. The lack of folding
distortions of the grid lines close to the layer shows that defor-
mation is nearly homogeneous. Most of the deformation recorded
in these specimens consists of passive amplification of initially
prescribed perturbations with little or no folding. This same
decrease in amplification rate has been recorded in numerical
experiments by Zhang et al. (1996) and is consistent with the
analysis of Mühlhaus et al. (1994).

2.2.4. The dominant wavelength in elastic-viscous materials;
constant strain rate conditions

The discussion of fold wavelength evolution given by Mühlhaus
et al. (1994) applies to a purely viscous material embedded in
another purely viscous material. If the strain rate is small enough,
(Hunt et al., 1996b; Schmalholz and Podladchikov, 1999; Zhang
et al., 2000; Jeng and Huang, 2008) a Maxwell elastic-viscous
material behaves as a viscous material. In Fig. 3 the behaviour of
a Maxwell material embedded in another Maxwell material is
explored for constant strain rate boundary conditions and a range
of viscosity ratios. The imposed strain rate is small enough that the
materials behave as viscous materials. The behaviour follows that
illustrated in Fig. 2 for low shortening strains but as the shortening
strain increases and the amplification rate for a particular wave-
length decreases to low values the layered material undergoes
almost homogeneous pure shearing and the wavelength estab-
lished early in the history undergoes shortening in much the same
way as proposed by Sherwin and Chapple (1968) for constant force
boundary conditions. Thus there are two processes operating to
establish the dominant wavelength, one is the process of contin-
uous evolution to smaller wavelengths described by Mühlhaus
et al. (1994) and superimposed on this is a Sherwin and Chapple
type of process which leads to homogeneous shortening of previ-
ously established wavelengths.

The initial geometry for Fig. 3 is given in Fig. 1 and the consti-
tutive relation is elastic-linear viscous (Maxwell coupling) with
elastic constitutive parameters given in Table 4. The viscosity ratios
are given in the figure caption and below. The layer has been
initially distorted according to a perturbation field given by

w ¼ wo

X10

n¼1

sin
10x1

nlB

where wo ¼ 0.05h. A sensitivity analysis such as illustrated in Fig. 3
shows that folding does not begin to become important at short-
ening strains of 40% until viscosity ratios reach approximately 50.
At viscosity ratios of 10 and shortening strains of 40% low ampli-
tude deflections develop. One needs to adopt far larger viscosity
ratios for significant folding to be established by reasonable (say
30%) total shortening. At viscosity ratios less than 50, the initial
perturbation velocity field predicted by the linear theories decays
with increased strain to ultimately simply reinforce the imposed
homogeneous strain field. In keeping with the analysis of Mühlhaus
et al. (1994) and summarised in Fig. 2, lD < lB especially at large
viscosity ratios but by 40% shortening the ratios of dominant
wavelength to thickness for viscosity ratios less than about 1000
are still above or near the upper limits of what are observed in
natural examples. The examples in Fig. 3 result from a bulk short-
ening strain rate of 10�12 s�1. The same general behaviour is
observed at a strain rate of 10�13 s�1.

Natural folds are rarely, if ever, strictly periodic; that is they are
rarely characterised by a single dominant wavelength or a narrow
distribution around a dominant wavelength. A clear example here
is the ubiquitous existence in Nature of parasitic folds. The situation
is not resolved by introducing geometrical non-linearities such as
initial irregularities (see Abbassi and Mancktelow, 1990, 1992;
Mancktelow, 1999, 2001). One may propose that non-linear
constitutive laws will solve the problem. However power-law
viscous materials give similar results to linear viscous materials
(Fletcher, 1974; Smith, 1977, 1979; Mühlhaus et al., 1998) except the
dominant wavelength, as noted above, is less than lB. In some
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instances, for elastic-viscous materials, two wavelengths do
develop (Mühlhaus et al., 1998; Jeng et al., 2002; Jeng and Huang,
2008). The discussion of Mühlhaus et al. (1998) indicates that for
the development of two wavelengths in layered Maxwell materials
with realistic relaxation times and strain rates, the viscosity ratios
need to be large (>1000). Localised wave packets can develop if
there is a significant contribution from elastic behaviour (Hunt
et al., 1996a). Patton and Watkinson (2005) used a Second Order
Fluid and predict folds with l/h ratios in the range 2–7 with low
viscosity ratios but a single wavelength is amplified.

Thus, the classical Biot approach, and its extension to non-
linear viscous materials, is capable of qualitatively explaining the
basic geometrical features of folds, namely periodicity and
a wavelength proportional to layer thickness. Non-linear viscous
materials do produce realistic dominant wavelengths but only for
unrealistic stress exponents involving N greater than about 5.
Exponents as large as this are rare in experimental results (marble,
with N ¼ 7–8, is the exception, Heard and Raleigh, 1972; Walker
et al., 1990). This prompted the suggestion (Fletcher, 1974; Smith,
1975, 1977) that experimental results may not be representative of
natural deformation conditions. This issue remains open. Linear
viscous materials predict dominant wavelengths that are
comparable to natural situations for realistic growth rates for
constant force boundary conditions for viscosity ratios as low as
20 if layer parallel shortening is taken into account but for
constant velocity and strain rate conditions amplification rates are
relatively small and realistic folds do not develop unless viscosity
ratios are of the order of 3000. Elastic-viscous materials with
constant force boundary conditions behave as viscous materials
but constant strain rate conditions again result in folding only for
large (>50) viscosity ratios.

3. Mechanical differences in natural materials

Since, in the classical theories, the folding instability arises from
differences in competency, we explore in this section the ranges of
differences that are likely to exist in rocks given the experimental
data available.

3.1. Elasticity

Data for elastic moduli of rocks are given in Table 2. Two elastic
moduli are required to define the elasticity of an isotropic medium
(see Fig. 2) and in Table 2 we present data for Young’s modulus and
the Bulk modulus. Notice that for the complete array of rocks
presented in Table 2 the range is a factor of 10 from shales at one
end of the spectrum to marble and dolomite at the other end. Thus
a layer of sandstone or dolomite embedded in shale would not fold
given the classical theory if driven solely by differences in elastic
moduli.
Table 2
Young’s modulus and bulk modulus for typical rock types (From Turcotte and
Schubert, 1982)

Rock type Young’s modulus Bulk modulus

1011 Pa 1011 Pa

Shale 0.1–0.3 0.14
Sandstone 0.1–0.6 0.04–0.3
Limestone 0.6–0.8 0.2–0.3
Dolomite 0.5–0.9 0.3–0.5
Marble 0.3–0.9 0.2–0.35
Gneiss 0.4–0.7 0.1–0.35
Basalt 0.6–0.8 0.3
Granite 0.4–0.7 0.2–0.3
Anorthosite 0.8 0.35
Halite 0.7 0.3
3.2. Rate insensitive plasticity

If we assume that plasticity in rocks is represented by a Mohr–
Coulomb constitutive relation (Vermeer and de Borst, 1984), then
the two quantities that define the strength in compression are the
cohesion, c, and the friction angle, 4. If the material behaves as
a Drucker–Prager material then the relevant parameters that define
the strength are related to the cohesion and friction; they are of the
same order of magnitude for the two constitutive relations. Table 3
presents plasticity data for a range of rocks. The maximum principal
stress, s1, at yield in compression is given by (see Ord, 1991)

s1 ¼ p
1þ sinf

1� sinf
þ 2c

cosf

1� sinf
(7)

where p is the confining pressure.
We arbitrarily consider a confining pressure of 100 MPa and the

values for s1 are also given in Table 3. Again, the difference in
strength for plastic materials is never more than 20 so that differ-
ences in competency arising from plasticity are not likely to
produce folding. An exception could be massive basalt embedded in
water saturated clay rich shales. The values reported in Table 3 are
from Goodman (1980). Ord (1991) reports values for cohesion,
friction angle and dilation angle based on experimental data from
Edmond and Paterson (1972) and on an assumption that rocks
behave as Mohr-Coulomb materials. Her tabulations for confining
pressures up to 800 MPa (for marble) and 600 MPa (for sandstone)
are compatible with the results reported by Goodman; her results
also report data that follow the evolutionary behaviour of these
parameters during deformation and with increased confining
pressure. The friction angle decreases as confining pressure
increases whereas the cohesion increases but still remain in the
ranges reported in Table 3. For folding to develop in rocks with
plastic constitutive behaviour, processes other than the Biot type of
process need to operate such as the development of localised shear
zones or fold packets.
3.3. Viscosity

We explore three geologically realistic possibilities here for
power-law viscous materials. The constitutive law is given by

_3ij ¼ As=ijð3J2Þ
N�1

2 exp
�
�Q
RT

��
d
do

�d

(8)

where A is a material constant, Q is the activation enthalpy, R is the
gas constant, d is the grain size in microns, do is a reference grain
size and d the grain size exponent; N is a material constant known
Cohesion, friction angle and compressive strength at 100 MPa confining pressure for
typical crustal rock types assuming Mohr–Coulomb behaviour (from Goodman,
1980)

Rock type Cohesion Friction
angle

Confining
pressure range

Compressive
strength

MPa Degrees MPa MPa at 100 MPa
confining pressure

Berea sandstone 27.2 27.8 0–200 92.9
Muddy shale 38.4 14.4 0–200 100.7
Edmonton bentonitic

shale (with 30% water)
0.3 7.5 0.1–3.1 2.0

Sioux quartzite 70.6 48.0 0–203 367.9
Georgia marble 21.2 25.3 5.6–68.9 69.4
Chalk 0 31.5 10–90 3.2
Blaine anhydrite 43.4 29.4 0–203 151.5
Stone Mtn granite 55.1 51.0 0–68.9 319.2
Nevada test site basalt 66.2 31.0 3.4–34.5 237.1
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as the stress exponent. J2 (defined in equation (11)) is the second
invariant of the deviatoric stress tensor, s0ij which is given by

s0ijhsij þ pdij (9)

where
p ¼ �1

3traceðsijÞ
is the trace of the Cauchy stress tensor, sij, or the pressure. Some
values for A, Q and N are given in Tables 4 and 5. Notice that N is
generally less than 5; an exception is coarse grained marble where
N ¼ 7–8.

The first possibility explored here involves quartzite embedded
in marble, the second involves feldspathic material embedded in
quartzite and the third involves wet diabase embedded in feld-
spathic material. The constitutive parameters are given in Table 4
and the resultant viscosity ratios are given graphically for feld-
spathic material embedded in quartzite in Fig. 4. For geologically
realistic conditions, the viscosity ratio never exceeds 20. Calcula-
tions show that for the other rock assemblages, the viscosity ratios
are not sufficient to drive folding or boudinage instabilities. An
exception is quartzite embedded in marble (with do ¼ 1 mm) with
a stabilised grain size of 1 mm at temperatures of 600 K and strain-
rates of 10�13 s�1 where the viscosity ratio is 905. Under these same
conditions at a stabilised grain size of 10 mm the viscosity ratio is
reduced to 69. In Fig. 4 the effective viscosity, heff is defined as

heff ¼
ffiffiffiffiffiffiffi
3J2

p
_3

(10)

where J2 is the second invariant of the deviatoric stress and _3 is the
strain-rate. J2 is given by (Jaeger, 1969)

J2 ¼
1
6

h
ðs1 � s2Þ2þðs2 � s3Þ2þðs3 � s1Þ2

i
(11)

The effective viscosity defined in equation (10) is the secant effec-
tive viscosity (see Smith, 1977, Fig. 3). For power law viscous
materials there is another measure of the effective viscosity,
namely, the tangent effective viscosity, vs=v_3. This is equal to heff =N.
Thus the ratio of effective tangent viscosities is Ne=NL of the ratio of
effective secant ratios and hence of much the same magnitude, but
smaller, for constitutive parameters considered here.

It is clear from Fletcher (1974), Smith (1977) and equation (5)
that the growth rates for folds involve the stress exponent, N, as an
important parameter. Some experimental values of these are listed
in Tables 4 and 5. Values of N > 5 are not common.

The important point, as the analysis of Mühlhaus et al. (1994)
and Figs. 2 and 3 demonstrates, is that for any viscosity ratio the
growth rates developed at small strains (where the linear theory
holds) may not persist to high strains for constant strain rate or
velocity boundary conditions. As the deformation proceeds the
homogeneous component of the displacement field swamps the
Table 4
Constitutive parameters for models involving elastic-viscous–thermal coupling

Quantity Description Units

A Pre exponential factor Pa�N s�1

Q Activation enthalpy J mol�1

N Stress power law exponent –
d Grain size exponent –

Bulk modulus of layer in Fig. 3 Pa
Shear modulus of layer in Fig. 3 Pa
Bulk modulus of embedding medium in Fig. 3 Pa
Shear modulus of embedding medium in Fig. 3 Pa

a Hirth et al. (2001).
b Walker et al. (1990).
c Strehlau and Meissner (1987).
inhomogeneous field responsible for fold growth and the defor-
mation field decays to homogeneous shortening with a consequent
continued reduction in lD.

4. Thermodynamics of coupled thermal–mechanical
behaviour

Most deforming systems in geology involve not only permanent
distortion of the rock mass but are accompanied by fluid transport,
chemical reactions and transport, and thermal transport. At least
while the rock is actively deforming and mineral reactions are
taking place, the system is not at equilibrium. A brief summary of
the essential features of the theory of the deformation of materials
with coupled processes involving fluid flow, chemical transport and
reactions, and thermal transport is presented below within the
framework of continuum non-equilibrium thermodynamics as
developed by authors such as Callen (1960), Lavenda (1978), Ziegler
(1983), Biot (1984), Coussy (1995, 2004), Maugin (1999) and
Nguyen (2000). This is done to set the general scene and to indicate
the way in which a varied array of processes operating in deforming
rocks may be brought under one framework. We finally arrive at the
Energy equation (19) which describes the temperature changes
that arise from dissipative processes in a deforming rock mass. We
then focus solely upon thermal processes for the purpose of this
paper.

4.1. Postulate of local state

Our basic assumption is that the postulate of local state is rele-
vant. This postulate says that in systems not at equilibrium, the
state variables relevant for describing the state of the system at
equilibrium are still relevant. It is not essential to do this but we
adopt this approach for simplicity. Other approaches to non-equi-
librium systems (so called Extended Non-Equilibrium Thermody-
namics, Jou et al., 1993, and various gradient theories, Voyiadjis
et al., 2003) have been developed where, in particular, gradients in
these state variables are relevant to a description of the system not
at equilibrium. For systems at equilibrium, gradients in state vari-
ables are usually not considered so that Extended Non-Equilibrium
Thermodynamics and thermodynamic gradient theories represent
a radical but realistic departure from the concepts of classical
equilibrium thermodynamics. We adopt a more conservative
approach.

4.2. Helmholtz Free Energy

The basis for tracking the energy fluxes in the coupled
deforming system is the Helmholtz Free Energy density,

J ¼ e� Ts (12)
Quartzitea Marbleb Feldspathic rockc Wet diabasec

1.33 � 10�34 5.01 � 10�6 7.84 � 10�26 7.94 � 10�20

135 � 103 190 � 103 163 � 103 276 � 103

4 1.7 3.1 3.0
0 �1.9 0 0

4.66 � 1010

2.8 � 1010

2.33� 109

1.4 � 109



Table 5
Ranges in value of the stress exponent, N, for a number of crustal rock types where
a power law experimental creep law has been established

Rock type Stress exponent, N

Dry quartzitea 1.9–2.9
Wet quartziteb 4.0
Dry granitea 2.9–3.4
Wet granitea 1.5
Dry diabasea 3.4
Wet diabasea 3.0
Coarse grained marblec 8.0
Marbled 5–7 high stress

3.3 medium stress
1.7 low stress

a Strehlau and Meissner (1987).
b Hirth et al. (2001).
c Heard and Raleigh (1972).
d Walker et al. (1990).

B. Hobbs et al. / Journal of Structural Geology 30 (2008) 1572–1592 1581
where e is the specific internal energy, s is the specific entropy and T
is the absolute temperature. J may also be written

J ¼ JðykÞ (13)

where yk is the array of k scalar, vector and tensor internal state
variables that are capable of describing the system at equilibrium. If
we incorporate more detail into equation (13) we can write J as

J ¼ J
�

3elastic
ij ;ak; T

�
(14)

where 3elastic
ij is the elastic strain tensor, and ak is the collection of k

scalar, vector and tensor internal state variables that describe the
various physical and chemical processes accompanying the defor-
mation. Notice that the total strain, 3total, the plastic strain, 3plastic,
and the viscous strain, 3viscous, are not thermodynamic state vari-
ables since all of these measures of strain are dependent upon the
deformation history. In systems where these strains are indepen-
dent of each other, that is, there are no feedback influences of
elastic, plastic and viscous processes, these strains can be written in
an additive manner (see Regenauer-Lieb et al., 2007):
Fig. 4. Plot of contrasts in effective viscosity against temperature and strain-rate for
feldspathic material embedded in quartzite. Constitutive parameters are given in
Table 4.
3total ¼ 3elastic þ 3plastic þ 3viscous (15)

In equation (15) we assume that the only deformation processes
that dissipate energy (i.e. are converted to heat or sound and not
stored in the material) are the plastic and viscous processes and we
write:

3dissipative ¼ 3plastic þ 3viscous (16)

However, for systems where there is coupling between these
various mechanisms, as there is for instance when plastic damage is
coupled to non-linear elasticity, one should consult Collins (2002),
Maugin (1999) and Ben-Zion and Lyakhovsky (2006). For this paper
we assume equations (15) and (16) are true.

One of the ai may for instance be the mass, mK, of the Kth
chemical component in the system. Then, the chemical potential of
this component, mK, is given by mK ¼ vJ=vmK . In a similar fashion,
if another ai is z,the variation in fluid content in the porous system
(see Detournay and Cheng, 1993), then the fluid pressure is given by
pf ¼ vJ=v2. Other classical state variables, such as the Cauchy
stress, sij, and the specific entropy, s, are given by sij ¼ vJ=v3elastic

ij
and by s ¼ �ðvJ=vTÞ respectively. Similar extensions can be made
to include damage, grain size, crystallographic preferred orienta-
tion and dislocation concentration as various additional ai (see
Lyakhovsky and Ben-Zion, 1997; Shizawa and Zbib, 1999; Voyiadjis
et al., 2003; Abu Al-Rub, 2004; Hamiel et al., 2004). Thus the
Helmholtz Free Energy together with evolution equations, and
constitutive relations to be discussed below, contain all of the
information needed to describe the processes involved in the fully
coupled deforming system with damage, thermal, fluid and
chemical feedback processes operating.

4.3. Constitutive equations and evolution laws

Additional components of the description of the fully coupled
system are the constitutive relations that describe the relations
between stress and strain or strain-rate, and the relations that
describe heat, fluid and chemical transport in the system. These
latter relations are those of Fourier, Darcy and Fick, respectively. If
the constitutive law that describes the deformation involves yield,
damage or fabric development then there also needs to be a yield
surface that defines the conditions under which the material is
elastic or at yield, and a relation (the flow rule) that describes how
the increment of inelastic strain-rate is related to the stress
together with prescriptions of the evolution of and controls on
damage and fabric. These constitutive and evolution laws, even if of
an empirical nature, clearly must satisfy the Second Law of Ther-
modynamics which is expressed by the Clausius–Duhem
Inequality. Indeed, in many instances the classical constitutive
equations and evolutionary laws may be derived directly from the
laws of thermodynamics and the Helmholtz Free Energy. Thus the
yield function for plastic strain-rate insensitive materials is the
Legendre Transform of the Dissipation Function (Collins and
Houlsby, 1997; Houlsby and Puzrin, 2000) and the evolution of
plastic strain follows directly from the orthogonality principle of
Ziegler (Ziegler, 1983; Collins and Houlsby, 1997) that says that the
actual state of the thermodynamic forces operating in a non-equilib-
rium system is that which maximises the dissipation function over all
other thermodynamically possible admissible states. We describe the
constitutive law used in this paper in Section 5.

4.4. First Law of Thermodynamics

Local conservation of energy within a non-reactive, dry system
is expressed by the following form of the First Law of Thermody-
namics (Truesdell and Toupin, 1960),
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r _e ¼ sij _3ij �
vqi

vxj
þ r (17)

where r is the density, _e is the time derivative of the specific
internal energy which appears in the Helmholtz Free Energy, qi is
the heat flux vector, and r is the heat supply per unit mass gener-
ated by internal sources such as radioactive decay. We assume r ¼ 0
in this paper. Expressions of the First Law for deforming continua
with coupled fluid flow (both single and multi-phase), phase
changes, chemical reactions, dissolution and precipitation and
phase transitions are given by Coussy (1995, 2004).

4.5. The Second Law of Thermodynamics and the Clausius–Duhem
Inequality

The Second Law of Thermodynamics for non-equilibrium
processes is given by the Clausius–Duhem Inequality (Truesdell and
Noll, 1965) which states that for the deformation of a specific
reference volume the total dissipation must be positive:

FshT
vs
vt
¼
	�

sij _3
dissipative
ij � r

�
vJ

vt
þ s

vT
vt

��
� qi

T
ViT


� 0 (18)

where Fs is the specific dissipation. The orthogonality principle of
Ziegler (1983) follows directly from the Second Law and vice versa
(Martyushev and Seleznev, 2006).

4.6. The Dissipation Function

The expression in curly brackets in the Clausius–Duhem
Inequality, equation (18), consists of two parts: (i) that in square
brackets represents the dissipation of energy due to deformation
together with the other non-thermal processes operating in the
system; and (ii) the dissipation of energy due to thermal conduc-
tion. The quantity in square brackets is known as the Dissipation
Function, F. Since the quantity

n
� qi

T
ViT
o

is always non-negative for a positive thermal conductivity, F is also
always non-negative.

4.7. The Energy Equation

If we combine the expression for the First Law of Thermody-
namics (equation (17)) with the definition of the Helmholtz Free
Energy (equations (12) and (14)), and with the volumetric strain
incorporated as a state variable, and use equations (15, 16) along
with the expression s ¼ �ðvJ=vTÞ then we arrive at the temper-
ature equation. This equation describes the energy fluxes during
deformation:

rcp
DT
Dt
¼ cs=ij _3

dissipation
ij � aT

Dp
Dt
� rcpkV2T (19)

where cp is the specific heat given by cp ¼ Tðv2J=vT2Þ and
aij ¼ rðv2J=vsijvTÞ (Nye, 1957). Although the thermal expansion is
a tensor we assume spherical symmetry for the tensor here and
represent it by the scalar a. The first term on the right of equation
(19) describes shear heating arising from the mechanical dissipa-
tive processes. c � 1 is the Taylor–Quinney coefficient and repre-
sents the proportion of mechanical work arising from dissipative
deformation that is available for heating or to drive diffusion,
chemical reactions and structural adjustments. At high strains and
low temperatures where the energy arising from deformation is
stored in crystal defects, c is generally in the range 0:85 � c � 1
(Taylor and Quinney, 1934) and we take c ¼ 1. The second term on
the right of equation (19) describes the temperature change arising
from isentropic work. The third term describes the temperature
change arising from thermal conduction with thermal diffusivity, k.
Equation (19) is fundamental in describing the temperature
changes that arise from the dissipative processes operating in
a deforming rock mass.
5. Folding with coupled thermal–mechanical feedback

We employ an elastic-plastic von Mises yield function (Rege-
nauer-Lieb and Yuen, 2003) together with a power law creep
function such that the contributions to the total strain-rate, _3Total

ij ,
from the elastic, _3elastic

ij , plastic, _3plastic
ij and creep, _3creep

ij , strain-rates,
are additive:

_3Total
ij ¼ _3elastic

ij þ _3plastic
ij þ _3creep

ij (20)

or,

_3Total
ij ¼

0
@1þ n

E

D~s=ij
Dt
þ n

E
Dp
Dt
þ a

DT
Dt

dij

1
A

elastic

þ

0
@_3plastic

ij

s=ij
2s

1
Aplastic

þ
�

As=ijð3J2Þ
N�1

2 exp½�Q
RT
�
�creep

ð21Þ

where E is Young’s modulus, n is Poisson’s ratio and a is the coef-
ficient of thermal expansion. The operator D=Dt denotes the
material derivative. ~s0ij is the objective co-rotational stress and dij is
the Kronecker delta. A and N are power law material constants, Q is
the activation enthalpy and R is the gas constant. J2 is the second
invariant of the deviatoric stress tensor, s0ij, defined by equation (9).
s is the yield stress.

The governing equations then are firstly the Continuity equation:

vr

vt
þ rV � u ¼ 0 (22)

where u is the local material velocity vector. The continuity equa-
tion incorporates time as a derivative and so is coupled to the
Energy equation (19). Secondly, the momentum equation describes
equilibrium of forces:

V � sij þ f ¼ 0 (23)

where V � sij is the divergence of the Cauchy stress tensor and f is
the body force.

Two competing physical processes are essential for thermal–
mechanical instabilities to develop; one involves the energy stored
during deformation and the other, the energy dissipated during
deformation. The rock matrix stores energy as it deforms by elastic
deformation of the crystalline structure and by producing micro-
structural defects such as dislocation arrangements, micro-cracks
or grain size changes. These processes are expressed as strain-
hardening. The second process is the dissipation of energy, which
appears as heat. This in turn weakens the material if temperature
dependent processes dominate. For deformation modelled by
equation (8) the effective viscosity, heff, within a one dimensional
shear zone is described (Yuen et al., 1978; Fleitout and Froidevaux,
1980) by

heff z8krcp
R Tc

Q _32k2
(24)

where Tc is a critical temperature, and _3 is the instantaneous strain-
rate within the shear zone of initial, but collapsing, thickness, k.
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Equation (24) describes the temperature at the centre of this shear
zone at the beginning of localisation and implies that an order of
magnitude increase in strain-rate within such a shear zone leads to
a viscosity decrease of two orders of magnitude. As the shearing
progresses and heat is conducted from the shear zone, two
processes operate: (i) the viscosity within the shear zone decreases
through thermal–mechanical feedback, and (ii) the thickness
changes until the heat generated within the shear zone balances
that lost to the surrounding material by conduction. At this stage
the shear zone has achieved its minimum effective viscosity and
maximum strain-rate, _3max, related by

heff z2rcp
R Tc

Q _3max
(25)

and a steady state width, ltherm, given by equation (26) below.
Equation (25) is exact for Newtonian viscous flow (N ¼ 1) and
a good approximation for power law viscous flow (Fleitout and
Froidevaux, 1980). While the analytical approaches based on linear
stability analyses (Ogawa, 1987; Hobbs and Ord, 1988) give insight
into the instabilities associated with shear zone development,
numerical models are required to investigate details of the growth
of these instabilities and how they may nucleate folds. Whether
new instabilities can develop during folding, and whether their
development has an influence upon fold shape or upon fold
evolution, can at present only be addressed numerically. Details
of the theory behind the results presented are given in recent
papers (Regenauer-Lieb and Yuen, 2003; Regenauer-Lieb et al.,
2006).

In the more realistic case with thermal-elasticity, equation (19)
shows that the contribution from the isentropic power can be
significant. It effectively reduces the required temperature rise
from shear heating to only a fraction of a degree thus opening the
possibility of thermal–mechanical feedback to all geological
materials and not just the materials with a high activation enthalpy
like olivine. Most of the calculations presented here consider
thermal-elasticity, thus incorporating isentropic power production
which acts as a booster to thermal–mechanical instabilities.

6. Modelling of folding with thermal–mechanical feedback

The fundamental scaling length for the thermal–mechanical
shear heating feedback is the thermal diffusion length scale of the
shear zone given by the thermal diffusion equation (Carslaw and
Jaeger, 1959),

ltherm ¼ 2
ffiffiffiffiffiffiffiffiffiffi

k
_3max

r
(26)

where k is of the order of 10�6 m2 s�1 and _3max is the maximum
shear strain-rate in the shear zones at quasi-steady-state (say
10�12 s�1). ltherm is therefore of the order of 2 km. Another way of
considering this is to note that at a strain rate of 10�12 s�1 the heat
generated by deformation in a cube of rock of side 1 km diffuses out
of the cube by the time the strain reaches 25% unless processes at
a smaller scale (such as chemical reactions and damage formation)
consume that heat. This means however that thermal–mechanical
feedback operating alone produces only large scale folding. Folding
at a finer scale depends on the operation of other processes such as
thermal expansion, chemical reactions and volume changes asso-
ciated with chemical reactions (Regenauer-Lieb et al., in press). In
this paper only thermal expansion is considered in producing folds
at a finer scale than that predicted by equation (26). The scale of
these fine scale structures is governed by the scale of heterogeneity
of the thermal expansion coefficient.

The coupled set of equations (19), (21), (22) and (21) has been
implemented within a finite element thermo-mechanical code
(ABAQUS/Standard, 2000). Details of the numerical problems and
approach used are given in Regenauer-Lieb and Yuen (2004).
6.1. Single layers

Folding behaviour in thermal–mechanical coupled systems is
illustrated in a generic model that incorporates a variety of length
scales. This enables the generation of folds spanning length scales
from metres to kilometres. We reproduce examples at the inter-
mediate scale. The initial length of this model is 13.2 km and the
height is 3 km. A feldspathic layer of initial thickness 400 m is
embedded in a quartz rich matrix. We present results for a single-
layer model at temperatures between 510 K and 570 K. We have
presented results for 530 K elsewhere (Hobbs et al., 2007). The
models are initially isothermal rather than incorporating
a geothermal gradient. Our rationale for this derives from
a consideration of the thermal Peclet Number, Pethermal, which is the
ratio of heat transport due to advection by the deforming material
to heat transport by conduction. This non-dimensional number is
given by

Pethermal ¼ L2 _3Total

k

where L is the height of the model. In the models considered,
Pethermal begins at 0.9 increasing during deformation to >8.0. Thus
heat is moved by the deforming material faster than by conduction
so that the local temperature in the model stays constant except for
temperature changes induced by the deformation. Although initial
geothermal gradients could be considered here, as a means to
facilitate an understanding of the mechanisms involved we have
opted to neglect them. Fine scale heterogeneity is introduced by
incorporating random thermal perturbations associated with
a thermal expansion strain of the order of 10�9. These initial
perturbations act as white noise for thermal–mechanical instabil-
ities, which in turn cause thermal strain five orders of magnitude
larger than that of the random perturbations. Perturbations may be
interpreted as small-scale compositional-fabric heterogeneities
such as would arise in a natural assemblage of quartz, feldspar and
mica. Although this is a realistic thermal–mechanical effect, the
perturbations also have a pure computational meaning in that they
allow thermal–mechanical instabilities to arise around perturba-
tions rather than nucleating from numerical round-off errors that
are strictly mesh sensitive. In all models the initial topography of
the quartz-feldspar interface is perturbed following an elastic
eigenmode analysis (first 20 modes are perturbed) allowing the
possibility for classical folding instabilities to develop, if this
mechanism dominates.

We specifically explore the behaviour of a system in which there
is initially a small difference in mechanical properties between the
layer and the embedding matrix. The constitutive parameters are
given in Table 4. At 540 K and a strain-rate of 10�13 s�1 the secant
viscosity ratio is 3.2 (see Fig. 4) which in classical un-coupled
theory would produce negligible fold amplification (see Fig. 3 of
Sherwin and Chapple, 1968; Fig. 8 of Smith, 1977; Mühlhaus et al.,
1994; and Fig. 2 of this paper). The tangent viscosity ratio is 2.5.
The viscosity ratios for other conditions may also be read from
Fig. 4.

Many constitutive relations for quartzites with different
constitutive parameters to those selected here are tabulated by
Evans and Kohlstedt (1995). Most of these give viscosity ratios at
the conditions of interest larger than 3.2 quoted above (up to a ratio
of 250); three give smaller ratios. The constitutive relation for
quartzite is that selected by Hirth et al. (2001), after a critical
analysis of the experimental data available, as most likely to
represent natural behaviour. In accepting these constitutive
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parameters from the available experimental data the point is made
that this combination of parameters can never lead to folding by
a Biot mechanism.

Fig. 5 shows results for single layer folding with no initial fine
scale heterogeneity. The maximum ratio of the stress at this stage of
deformation, is w10. Large-scale ductile shear zones appear, arising
from shear heating feedback, after 1 million years shortening. At
this large scale shear heating feedback is the most efficient mech-
anism leading to instability. By this is meant that although the
opportunity exists within the model setup for folds to develop by
the classical un-coupled mechanism from initial geometrical
perturbations driven by weak viscosity ratios, the perturbations
induced by thermal–mechanical feedback grow fastest. At this
scale, the intersections of developing shear zones with layer
boundaries act as nucleation points for fold hinges. At these inter-
sections the effective viscosity of the feldspar rich material is
reduced due to shear heating in accordance with equation (25) and
these weakened areas act as nucleation sites for localised buckles.
In fact the viscosity in the feldspar layer in the inner side of the
hinges is now smaller than the ambient viscosity in the embedding
quartzite.
Fig. 5. Folding of feldspathic material embedded in quartzite at 530 K. 31% shortening of a la
stress. (b) Plot of effective viscosity.
The reflection of shear zones off the bottom and top boundaries
of the layer together with the inclination of shear zones at 45� to
the bulk shortening axis means that the wavelength of folds that
develop is of the order of 2h, a factor of approximately 2 less than lD

predicted by the analysis of Smith (1977, his Fig. 6) if such classical
folds could grow.

Fig. 6 shows the results of shortening a single layer at temper-
atures between 510 K and 570 K and 10�15 s�1 imposed strain rate.
The constitutive parameters are given in Table 4. No folds form at
510 K but fine scale crenulations are well developed. At the higher
temperatures, folding develops along with axial plane crenulations.
These crenulations are marked by distortion of the initial finite
element grid and represent shear instabilities at a fine scale within
an otherwise homogeneous matrix. They nucleate on the random
distribution of thermal expansion perturbations initially distrib-
uted through the matrix. Because they arise within the matrix
where all constitutive properties (other than the thermal expan-
sion) are initially uniform, we refer to these crenulations as
‘‘passive structures’’. They correspond to the crenulations in colour
bands of negligible strength difference commonly seen in quartz-
ites or marbles. This transition from no folding at 510 K through
yer initially 13.2 km long and 400 m thick. Shortening strain-rate is 10�14 s�1. (a) Plot of



Fig. 6. Shortening of a single layer at temperatures between 510 K and 570 K. No folds develop until a critical temperature of approximately 530 K is reached.
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somewhat brittle looking structures at 550 K to smooth, ductile
folds at 560 K we believe represents a progression through the
brittle-ductile transition.

Fig. 7 shows the geometry, viscosity and thermally induced
strain after 76% shortening for the single layer case in which fine
scale heterogeneity has been incorporated. Fig. 7a shows the
viscosity and Fig. 7b shows zones of intense inhomogeneity of
thermal strain developed parallel to the axial planes of the folds.
These zones coincide with zones of viscosity difference as would be
expected from equation (25). The thermal strain is defined as

3thermal
ij ¼ aDTdij (27)

where DT is the temperature rise within a shear zone. It is this
distribution of thermal strain, and its influence on the local
viscosity, that feeds back through equation (19) to produce the fine
scale axial plane crenulations shown in Fig. 7b. Small-scale folding
instabilities nucleate on the volumetric elastic expansion sites that
have been inserted as thermal perturbations in the initial condi-
tions. The folds become attenuated with strong shortening normal
to the axial plane of the folds as shown in Fig. 8. The fold profiles are
Type IA of Ramsay (1967). This contrasts with the nearly concentric
profiles developed in un-coupled systems (for example: Zhang
et al., 1996, 2000; Mancktelow, 2001; Schmalholz et al., 2001; Fig. 2
of this paper).

6.2. Multiple layers

Figs. 9 and 10 present the results of models in which two and ten
layers are compressed. The constitutive parameters are given in



Fig. 7. Fine scale structure arising from thermally induced strains originating from initial heterogeneity in the thermal expansion coefficient. Temperature, 530 K; bulk strain, 76%
shortening. (a) Distribution of strain. (b) Finer scale crenulations arising from initial heterogeneity of thermal expansion coefficient.
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Table 4, the temperature is 530 K and the imposed strain-rate is
10�15 s�1. The same basic features develop as for the single layer
case. Shear bands nucleate within the competent layers at 45� to
the layering. The effective viscosity is decreased within these shear
bands and the intersection of shear bands with the layer bound-
aries then nucleates buckles at these weakened boundaries where
the effective viscosity is up to 10 times less than in the rest of the
layer. Notice again, as in the single layer case, the effective viscosity
here is now less than that of the adjacent embedding medium.
These shear bands are preserved to quite high strains (Figs. 9 and
10) and are responsible for the development of parasitic folds.

7. Discussion

This paper has been concerned with the deformation of layered
rocks under conditions where thermal fluctuations, induced by
deformation, have strong feedback influences upon the rheological
properties. In general this will correspond to situations starting at
mid-crustal levels and extending to deep in the crust and below
into the mantle. We have shown that a large range of realistic
structures arises through thermal–mechanical coupling. The
important issue is that none of these structures would have arisen
without such coupling since according to the analyses of Sherwin
and Chapple (1968), Fletcher (1974), Smith (1975, 1977, 1979),
Johnson and Fletcher (1994) and Mühlhaus et al. (1994) the
viscosity ratios and/or the power law stress exponents of the
material comprising the layers are too small to enable growth rates
that would enable these structures to form at reasonable strains.

The folding process as such is quite distinct from the Biot
buckling process. Thermal softening is concentrated into localised
shear zones according to the mechanisms discussed by Fleitout and
Froidevaux (1980). These shear zones produce more or less periodic
intersections with the layering to induce localised zones of weak-
ening that then act as nucleation sites for buckles. The important
parameter involved is not the viscosity ratio but instead is the ratio
in activation enthalpy of the layer to that of the embedding
medium. The scale of folding produced by thermal–mechanical
feedback is controlled by the ratio of the thermal diffusivity to the
strain rate and hence for geological strain rates is in the range of
hundreds to thousands of metres. However, fine scale heteroge-
neities that involve processes that liberate or absorb heat produce
folding at a finer scale. These processes include volume changes
associated with chemical reactions or thermal expansion as two
examples. In this paper we have included fine scale heterogeneity
in thermal expansion and this leads to fine scale folding in
conjunction with coarse scale folding derived directly from
thermal–mechanical feedback. The same fundamental processes
operate with chemical-mechanical feedback where the scale
of folding is controlled by the ratio of chemical diffusivity to the
strain rate. For such chemical feedback processes folds develop at
the scale of centimetres to millimetres (Regenauer-Lieb et al., in
press).

It is natural to ask: Are there other forms of coupling that could
lead to similar structures perhaps in other parts of the crust?

In the upper crust, in particular, fluid flow in porous rocks
commonly accompanies deformation and, throughout the crust
and mantle, chemical transport, and chemical reactions accompany
deformation. The question is: do these processes also have an
influence upon the development of structures during deformation
of a similar character to those developed through thermal–
mechanical coupling? The answer is a resounding yes. The detailed
development of the influence of these feedback processes upon the



Fig. 8. Progressive shortening of a single layer at 550 K. Shortening is 26% in (a), 37% in (b), 47% in (c), 57% in (d), 67% in (e), 76% in (f), 76% in (g).
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development of structures, fabrics and mineral assemblages in
deforming rocks provides an overarching framework for under-
standing deformed and metamorphosed rocks and will be devel-
oped in subsequent papers. For the present, we give below
a strongly abbreviated discussion of the deformation of systems in
which fluid flow through a deforming, chemically reactive porous
system is accompanying the deformation to give a flavour of the
general framework governing deforming, chemically reactive
systems with fluid flow.

The theoretical basis for considering processes operating in
reactive, partially saturated deforming media is however in its
infancy. A good summary of the state of the art, with references, is
given by Coussy (1995, 2004).

For the case with no chemical reactions and single phase fluid
flow and with K chemical components dissolved in the fluid, the
non-thermal, mechanical part of the dissipation function, is

F ¼ sij _3ij þ mK
dmK

dt
ðsummation over the KsÞ (28)

whilst for the case with chemical reactions the non-thermal
dissipation function is

F ¼ sij _3ijþmK
dmK

dt
� JK �

�
gradmK �

vmK

vT
gradT

�
þFchemical (29)

In equations (28) and (29), mK is the chemical potential of the Kth
chemical component dissolved in the fluid, mK is the mass of this
component, JK is the mass flux of the Kth chemical component and
Fchemical is the dissipation due to the chemical reactions taking
place during deformation. The symbol � represents the scalar
product. Details are spelt out by Coussy (1995, 2004) but the
important point is that these expressions have forms that are
identical to that arising from thermal–mechanical coupling alone. If
one considers non-isothermal situations, fluid flow and chemical
reactions influence the heat produced during chemically reactive
fluid flow and hence influence the fluid pressure and/or the
viscosity of the deforming solid. Moreover, the chemical potential
of chemical components in the reactive deforming system is
influenced by stress, temperature and chemical concentrations so
that gradients in chemical potential, and hence fluxes in chemical
components, are an intrinsic part of the system.

Fluid–mechanical coupling depends upon the influence of pore
pressure on the effective stress in the material, which in turn
influences the deformation. There are two requirements here: (i)
the material exhibits dilatancy and (ii) the constitutive relation is
such that the effective stress has an influence on the deformation.
Both of these features are true for common plastic constitutive laws
such as Drucker–Prager and Mohr–Coulomb. If the material dilates
with increasing deformation then the pore pressure decreases in
the dilatant region leading to an increase in effective stress,
a process known as dilatancy hardening (Rice, 1975).

Thus instability in fluid saturated materials depends ultimately
upon fluctuations in the fluid pressure and hence, in dilatant plastic
materials, upon fluctuations in the effective stress. Note that Biot
published one paper (Biot, 1964) in which folding of a layer with
coupling to fluid flow was studied and an analogy drawn with ther-
moelastic effects. That paper indicated that coupling deformation to
fluid flow produces folds with dominant wavelengths described by
relationships identical to those involved in viscous systems with
functions involving the fluid pressure replacing the viscosity.

In these same materials with chemical reactions, there is
a contribution from the dissipation arising from the chemical
reactions in addition that can influence the temperature of the fluid
and hence influence the fluid pressure.



Fig. 9. Progressive shortening of two layers with initial spacing between the layers equal to layer thickness. Temperature 550 K. Shortening is 10% in (a), 40% in (b), 50% in (c), 55% in
(d), 60% in (e), 60% in (f).
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A quote from Biot (1974) summarises the situation and points to
the unity that non-equilibrium thermodynamics brings to under-
standing the deformation of coupled systems (dots indicate words
removed by the present authors);

‘‘The analysis of thermodynamic instability which is presented
. in the context of thermal diffusion remains valid for the much
more general case of unstable systems coupled with molecular
diffusion of chemical species since they are governed by the
same phenomenological Lagrangian equations of irreversible
processes. For instance in the case of buckling, the bending
deformation induces differences in chemical potentials of the
molecular constituents between the regions in tension and
compression, thus generating a diffusion and a creep buckling .
This is also implicit in the physical meaning of viscoelasticity
considered in the thermodynamic theory of initially stressed
solids . Similarly . the theory of thermoelasticity is in
complete analogy with the theory of porous solids, where
a viscous fluid is allowed to diffuse through the pores. In this
case the fluid pressure is the analogue of the temperature and
the fluid flow corresponds to heat flow.’’

It is important to note that the systems examined by Biot are
linear thermodynamic systems in the sense that thermodynamic
fluxes such as heat flow or Darcy fluid flow are linear functions of
thermodynamic forces, in these two cases, the gradients in
temperature and hydraulic potential respectively; such relation-
ships are common in processes relevant to geology. Moreover, the
systems studied by Biot are stationary in that steady state



Fig. 10. Progressive shortening of a ten layer sequence with initial spacing between the layers equal to layer thickness. Temperature 550 K. Shortening is 40% in (a), grid is shown,
40% in (b), strain is shown, 45% in (c), thermal stain is shown, 55% in (d), strain is shown, 55% in (e), stress is shown.
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conditions are assumed (Biot, 1955). Under such conditions, Pri-
gogine’s Principle of Minimum Entropy Production holds (Biot, 1955,
1958, 1974; Prigogine, 1955; Kondepudi and Prigogine, 1998). In
the coupled systems described here, although linear in
a thermodynamic sense, the systems are not stationary but evolve
with time. Here the Principle of Maximisation of Entropy Production
holds as proposed by Ziegler (1983). This is the more general
situation for non-equilibrium systems; the Prigogine Principle is
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a restricted sub-set of the Ziegler Principle (Martyushev and
Seleznev, 2006). This represents the fundamental difference
between the framework developed by Biot and that presented here.

8. Conclusions

8.1. Folding theory

The Biot theory of folding indicates that shortening of layered
viscous materials results in the growth of a dominant wavelength, lD.

The magnitude of lD depends on the layer thickness, h, the viscosity
ratio between the layers and the embedding material, the amount of
shortening and the boundary conditions. For constant force boundary
conditions and Newtonian viscosity the amplification rates are
exponential. lD is less than the Biot dominant wavelength, lB, for
viscosity ratios less than 100 but for viscosity ratios greater than 100,
lDzlB. In contrast, for viscosity ratios of approximately 20 and
constant force boundary conditions lD=h is in the range for natural
folds for 40% shortening and assumed amplification of about 100.
However for constant velocity boundary conditions, the amplification
rates are monotonically decreasing. lDzlBfor viscosity ratios of 20
but the total amplification is small. lD < lB for larger viscosity ratios
and the established wavelength is progressively decreased by
homogeneous shortening after amplification rates become small.
lD=h ratios resembling those of natural folds are not developed at 40%
shortening unless viscosity ratios are large (w103). For both dynamic
and kinematic boundary conditions significant amplification of folds
does not develop for viscosity ratios less than approximately 10.

8.2. Natural viscosity ratios

Experimental data indicates that the viscosity ratios needed to
drive the folding instability according to Biot type theories are too
small in natural mid to lower crustal situations for folds to form. It
may be that in some realistic situations such as quartzite embedded
within weak shales, or pure coarse grained calcite embedded in
stabilised very fine grained calcite, the viscosity ratios are high
enough for the Biot theory to be applicable but in many instances
especially in the mid to lower crust, other processes must operate.

8.3. Thermo-mechanical coupling

In this paper we have concentrated on thermal–mechanical
coupling for rate (and temperature) sensitive elastic-plastic-viscous
materials as one alternative to the Biot type of buckling mecha-
nisms. Folds readily develop in these materials with realistic (that is,
small, of the order of 2 times) ratios in effective viscosity. These
instabilities are driven by feedback of heat generated by mechanical
dissipation upon the viscosity of the material. Deformation leads to
the development of shear zones within which the viscosity is
reduced due to thermal softening. The intersection of these shear
zones with layers produces localised areas of weakening that
represent embryonic hinges that then buckle. The structures are
realistic in that folds develop at a number of wavelengths, are of
Type 1A or Type 3 at high strains and have axial plane structures
well developed. One scale of folding developed by this process is
controlled by the magnitude of the thermal diffusivity; the resultant
wavelengths range from 100s to 1000s of metres. However, folds
develop at finer scales arising from other dissipative processes such
as thermal expansion. The scale of these structures is governed by
the scale of heterogeneity of the coefficient of thermal expansion.

8.4. Other coupled processes

Although we have concentrated on thermal–mechanical
coupling, it is clear from Biot’s discussions that similar results are to
be expected from fluid–mechanical and chemical-mechanical
coupling. Although different physical–chemical processes are
operating, the structure of the laws for thermal, fluid and chemical
transport are identical (Fourier’s, Darcy’s and Fick’s Laws, respec-
tively). We propose that other processes may be equally important
including damage, and microstructural and preferred orientation
development. Combinations of these processes give insight into the
development of structures at a range of length scales from the
kilometre scale for thermal–mechanical feedback to the millimetre
scale for chemical-mechanical feedback.

8.5. A unified theory

The general coupling between deformation and these other
processes is fully unified within the concepts of non-equilibrium
thermodynamics as developed by Biot (see Biot, 1984) and as
extended and embellished by other workers (Ziegler, 1983; Coussy,
1995, 2004; Collins and Houlsby, 1997; Maugin, 1999; Nguyen,
2000; Abu Al-Rub, 2004) such that the Helmholtz Free Energy and
the Dissipation Function are sufficient to describe the evolution of
these systems. In subsequent papers we will explore these other
damage–mechanical, fluid–mechanical and chemical–mechanical
systems. The influence of chemical–mechanical feedback on the
folding process has been discussed by Regenauer-Lieb et al. (in
press) where folds on the scale of millimetres to centimetres are
developed.
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Hunt, G.W., Mühlhaus, H., Hobbs, B.E., Ord, A., 1996a. Localised folding of visco-
elastic layers. Geologische Rundschau 85, 58–64.
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Mühlhaus, H.-B., Moresi, L.N., Hobbs, B.E., Dufour, F., 2002. Large amplitude folding
in finely layered viscoelastic rock structures. PAGEOPH 159, 2311–2333.

Neurath, C., Smith, R.B., 1982. The effect of material properties on growth rates of
folding and boudinage: experiments with wax models. Journal of Structural
Geology 4, 215–229.

Nguyen, Q.S., 2000. Stability and Nonlinear Solid Mechanics. Wiley, Chichester, UK,
398 pp.

Nye, J.F., 1957. Physical Properties of Crystals. Clarendon Press, Oxford, 322 pp.
Ogawa, M., 1987. Shear instability in a viscoelastic material as the cause of deep

focus earthquakes. Journal of Geophysical Research 92 (B1), 13801–13810.
Ord, A., 1991. Deformation of rock: A pressure sensitive, dilatant material. PAGEOPH

137, 337–366.
Patton, R.L., Watkinson, J.A., 2005. A viscoelastic strain energy principle expressed

in fold-thrust belts and other compressional regimes. Journal of Structural
Geology 27, 1143–1154.

Price, N.J., Cosgrove, J.W., 1990. Analysis of Geological Structures. Cambridge
University Press.

Prigogine, I., 1955. Introduction to the Thermodynamics of Irreversible Processes.
Charles C. Thomas, Springfield, IL.

Ramberg, H., 1963. Fluid dynamics of viscous buckling applicable to the folding of
layered rocks. American Association of Petroleum Geologists Bulletin 47, 484–505.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill, New York, 568 pp.
Regenauer-Lieb, K., Yuen, D.A., 2003. Modeling shear zones in geological and

planetary sciences: solid- and fluid- thermal- mechanical approaches. Earth
Science Reviews 63, 295–349.

Regenauer-Lieb, K., Yuen, D.A., 2004. Positive feedback of interacting ductile faults
from coupling of equation of state, rheology and thermalmechanics. Physics of
Earth and Planetary Interiors 142, 113–135.

Regenauer-Lieb, K., Weinberg, R.F., Rosenbaum, G., 2006. The effect of energy
feedbacks on continental strength. Nature 442, 67–70, doi:10.1038/
nature04868.

Regenauer-Lieb, K., Hobbs, B.E., Ord, A., Yuen, D.A., 2007. Non-equilibrium Ther-
modynamics, Thermomechanics, Geodynamics. Computational Science – ICCS
2007. 7th International Conference, Beijing, China, May 27–30, 2007. Lecture
Notes in Computer Science, vol. 4487/2007, 62–69. DOI10.1007/978-3-540-
72584-8_9.

Regenauer-Lieb, K., Hobbs, B.E., Ord, A., in press. Deformation with coupled
chemical diffusion. Physics of the Earth and Planetary Interiors, doi:10.1016/j.
pepi.2008.08.013.

Rice, J.R., 1975. On the stability of dilatant hardening for saturated rock masses.
Journal of Geophysical Research 80, 1531–1536.

Schmalholz, S.M., Podladchikov, Y.Y., 1999. Buckling versus folding: Importance of
viscoelasticity. Geophysical Research Letters 26, 2641–2644.

Schmalholz, S.M., Podladchikov, Y.Y., Schmid, D.W., 2001. A spectral/finite difference
method for simulating large deformations of heterogeneous, viscoelastic
materials. Geophysical Journal International 145, 199–208, doi:10.1046/j.o956-
540x.2000.01371.x.

Sherwin, J., Chapple, W.M., 1968. Wavelength of single layer folds: A comparison
between theory and observation. American Journal of Science 266, 167–179.

Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory of gradient elastoplasticity
with dislocation density tensor: I. Fundamentals. International Journal of
Plasticity 15, 899–938.

Smith, R.B., 1975. A unified theory of the onset of folding, boudinage, and mullion
structure. Bulleting of the Geological Society of America 86, 1601–1609.

Smith, R.B., 1977. Formation of folds, boudinage and mullions in non-Newtonian
materials. Bulleting of the Geological Society of America 88, 312–320.

Smith, R.B., 1979. The folding of a strongly non-Newtonian layer. American Journal
of Science 279, 272–287.

Strehlau, J., Meissner, R., 1987. Estimation of crustal viscosities and shear stresses
from an extrapolation of experimental steady state flow data. In: Fuchs, K.,

http://DOI10.1007/978-3-540-72584-8_9
http://DOI10.1007/978-3-540-72584-8_9
http://doi:10.1016/j.pepi.2008.08.013
http://doi:10.1016/j.pepi.2008.08.013


B. Hobbs et al. / Journal of Structural Geology 30 (2008) 1572–15921592
Froidevaux, C. (Eds.), Composition, Structure and Dynamics of the Lithosphere-
Asthenosphere System. AGU, GSA, pp. 69–87.

Taylor, G.I., Quinney, H., 1934. The latent energy remaining in a metal after cold
working. Proceedings of the Royal Society A CXLIII, 307–326.

Truesdell, C., Toupin, R.A., 1960. The classical field theories. In: Flugge, S.
(Ed.), Encyclopaedia of Physics, vol. 3/1. Springer-Verlag, Berlin, pp. 226–
793.

Truesdell, C., Noll, W., 1965. The non-linear field theories of mechanics. In: Flugge, S.
(Ed.), Encyclopaedia of Physics, vol. 3/3. Springer-Verlag, Berlin.

Turcotte, D.L., Schubert, G., 1982. Geodynamics. Wiley, New York, 450 pp.
Vermeer, P.A., de Borst, R., 1984. Non-associated plasticity for soils, concrete and

rock. Heron 29, 1–64.
Voyiadjis, G.Z., Abu Al-Rub, R., Palazotto, A.N., 2003. Gradient dependent visco-

plasticity and viscodamage. 16th ASCE Engineering Mechanics Conference, July
16–18, 2003, University of Washington, Seattle, pp. 1-12.
Walker, A.N., Rutter, E.H., Brodie, K.H., 1990. Experimental study of grain-size
sensitive flow of synthetic, hot-pressed calcite rocks. In: Knipe, R.J., Rutter, E.H.
(Eds.), Deformation Mechanisms, Rheology and Tectonics. Geological Society
Special Publication No. 54, pp. 259–284.

Yuen, D.A., Fleitout, L., Schubert, G., Froidevaux, C., 1978. Shear deformation zones
along major transform faults and subducting slabs. Geophysical Journal of the
Royal Astronomical Society 54 (1), 93–119.
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modelling of single-layer folding: clarification of an issue regarding the possible
effect of computer codes and the influence of initial irregularities. Journal of
Structural Geology 22, 1511–1522.

Ziegler, H., 1983. An Introduction to Thermomechanics, second ed. North-Holland
Publishing Company, Amsterdam, 356 pp.


	Folding with thermal-mechanical feedback
	Introduction
	Background
	Purpose of the paper
	Plan of the paper

	Deformation with no thermal feedback
	The stability of deforming systems
	Classical un-coupled folding theory
	Definition of the deforming system
	Deformation of viscous materials
	Deformation of elastic-viscous materials
	The dominant wavelength in elastic-viscous materials; constant strain rate conditions


	Mechanical differences in natural materials
	Elasticity
	Rate insensitive plasticity
	Viscosity

	Thermodynamics of coupled thermal-mechanical behaviour
	Postulate of local state
	Helmholtz Free Energy
	Constitutive equations and evolution laws
	First Law of Thermodynamics
	The Second Law of Thermodynamics and the Clausius-Duhem Inequality
	The Dissipation Function
	The Energy Equation

	Folding with coupled thermal-mechanical feedback
	Modelling of folding with thermal-mechanical feedback
	Single layers
	Multiple layers

	Discussion
	Conclusions
	Folding theory
	Natural viscosity ratios
	Thermo-mechanical coupling
	Other coupled processes
	A unified theory

	Acknowledgements
	References


